Most Popular
1. It’s a New Macro, the Gold Market Knows It, But Dead Men Walking Do Not (yet)- Gary_Tanashian
2.Stock Market Presidential Election Cycle Seasonal Trend Analysis - Nadeem_Walayat
3. Bitcoin S&P Pattern - Nadeem_Walayat
4.Nvidia Blow Off Top - Flying High like the Phoenix too Close to the Sun - Nadeem_Walayat
4.U.S. financial market’s “Weimar phase” impact to your fiat and digital assets - Raymond_Matison
5. How to Profit from the Global Warming ClImate Change Mega Death Trend - Part1 - Nadeem_Walayat
7.Bitcoin Gravy Train Trend Forecast 2024 - - Nadeem_Walayat
8.The Bond Trade and Interest Rates - Nadeem_Walayat
9.It’s Easy to Scream Stocks Bubble! - Stephen_McBride
10.Fed’s Next Intertest Rate Move might not align with popular consensus - Richard_Mills
Last 7 days
THEY DON'T RING THE BELL AT THE CRPTO MARKET TOP! - 20th Dec 24
CEREBUS IPO NVIDIA KILLER? - 18th Dec 24
Nvidia Stock 5X to 30X - 18th Dec 24
LRCX Stock Split - 18th Dec 24
Stock Market Expected Trend Forecast - 18th Dec 24
Silver’s Evolving Market: Bright Prospects and Lingering Challenges - 18th Dec 24
Extreme Levels of Work-for-Gold Ratio - 18th Dec 24
Tesla $460, Bitcoin $107k, S&P 6080 - The Pump Continues! - 16th Dec 24
Stock Market Risk to the Upside! S&P 7000 Forecast 2025 - 15th Dec 24
Stock Market 2025 Mid Decade Year - 15th Dec 24
Sheffield Christmas Market 2024 Is a Building Site - 15th Dec 24
Got Copper or Gold Miners? Watch Out - 15th Dec 24
Republican vs Democrat Presidents and the Stock Market - 13th Dec 24
Stock Market Up 8 Out of First 9 months - 13th Dec 24
What Does a Strong Sept Mean for the Stock Market? - 13th Dec 24
Is Trump the Most Pro-Stock Market President Ever? - 13th Dec 24
Interest Rates, Unemployment and the SPX - 13th Dec 24
Fed Balance Sheet Continues To Decline - 13th Dec 24
Trump Stocks and Crypto Mania 2025 Incoming as Bitcoin Breaks Above $100k - 8th Dec 24
Gold Price Multiple Confirmations - Are You Ready? - 8th Dec 24
Gold Price Monster Upleg Lives - 8th Dec 24
Stock & Crypto Markets Going into December 2024 - 2nd Dec 24
US Presidential Election Year Stock Market Seasonal Trend - 29th Nov 24
Who controls the past controls the future: who controls the present controls the past - 29th Nov 24
Gold After Trump Wins - 29th Nov 24
The AI Stocks, Housing, Inflation and Bitcoin Crypto Mega-trends - 27th Nov 24
Gold Price Ahead of the Thanksgiving Weekend - 27th Nov 24
Bitcoin Gravy Train Trend Forecast to June 2025 - 24th Nov 24
Stocks, Bitcoin and Crypto Markets Breaking Bad on Donald Trump Pump - 21st Nov 24
Gold Price To Re-Test $2,700 - 21st Nov 24
Stock Market Sentiment Speaks: This Is My Strong Warning To You - 21st Nov 24
Financial Crisis 2025 - This is Going to Shock People! - 21st Nov 24
Dubai Deluge - AI Tech Stocks Earnings Correction Opportunities - 18th Nov 24
Why President Trump Has NO Real Power - Deep State Military Industrial Complex - 8th Nov 24
Social Grant Increases and Serge Belamant Amid South Africa's New Political Landscape - 8th Nov 24
Is Forex Worth It? - 8th Nov 24
Nvidia Numero Uno in Count Down to President Donald Pump Election Victory - 5th Nov 24
Trump or Harris - Who Wins US Presidential Election 2024 Forecast Prediction - 5th Nov 24
Stock Market Brief in Count Down to US Election Result 2024 - 3rd Nov 24
Gold Stocks’ Winter Rally 2024 - 3rd Nov 24
Why Countdown to U.S. Recession is Underway - 3rd Nov 24
Stock Market Trend Forecast to Jan 2025 - 2nd Nov 24
President Donald PUMP Forecast to Win US Presidential Election 2024 - 1st Nov 24

Market Oracle FREE Newsletter

How to Protect your Wealth by Investing in AI Tech Stocks

Hidden Home Price Decline In Silicon Valley Housing Market

Housing-Market / US Housing Apr 16, 2007 - 11:38 AM GMT

By: Jas_Jain

Housing-Market

The home price declines in Silicon Valley are anything but hidden for most people trying to sell their homes, but it doesn't seem to show up in monthly and weekly reports that show slight YoY gains in the median prices. I have used Santa Clara County as a proxy for Silicon Valley and it is also a good proxy for the SF Bay Area except that Santa Clara County has held up better than most other parts of the Bay Area.

There are two sources of data that I have used - DataQuick, which reports on all home sales, SFHs (single family homes) and condos, new and resales, and sales on MLS, reported by California Association of Realtors (CAR), which reports SFHs and condos separately and most of the detail break down are for SFHs. San Jose Mercury News, the main paper in the area, publishes weekly data from DataQuick with break down by zip codes and that is my source for the DataQuick reports.


My objective is to present an explanative model and factual data that unambiguously show why the price declines are not showing up in the reported data. Let us start with a simplified model of what is happening in the real world shown in Table 1.

Table 1: Hypothetical Volume & Price Mix of
SFHs Sold In Santa Clara County
A Year Ago Present
Volume Price Volume Price
$2M & Above 1.8M & Above
200 1$.5M 225 $1.35M
200 $1M 250 $900K
300 $800K 200 $720K
200 $600K 150 $540K
100 $500K & Lower 75 $450K & Lower
Total Median Total Median
1000 $800K 900 $900K

What you will see from Table 1 is that despite drops in volume and price there can be a gain in the median price if the mix of home sales changes significantly from a year ago in favor of the high-priced areas. This very much seems to be the case based on reports to-date as well as a report from the field on the current activity (sales initiated in March and April that will show up in reports for April and May).

Let us start with fundamentals of supply and demand to see where the pressure for the price declines is coming from. From the most recent reports the demand for SHF resales for the county is down 20%, YoY. Fig. 1 shows that the supply is up 40%, YoY, and the YoY percentage increase has gone up from 20% to 40% over the past two months and this trend is likely to continue.

The combination of 40% increase in supply and 20% decline in sales, YoY, means that over the past 12 months the supply-demand has deteriorated by 75% (1.4/0.8 = 1.75), i.e., the supply is up 75% relative to the demand. Now, let us see what is happening to the prices.

Fig. 2 above shows the median listing price of SFHs listed on MLS (the listings that are pending sale are excluded). The 13.5% decline does over-estimate the actual decline in prices, or price pressure, because currently the median price of sales is 5-10% higher than the median listing price while a year ago it was 5-10% lower. This is strictly due to significantly higher level of sales in the high-priced areas and much lower level of sales in lower-priced areas. This will result in fewer active listings in the higher-priced areas and mounting listings in the lower-priced areas, thus depressing the median listing price.

Now, I need to provide evidence that indeed there are higher levels of sales in high-priced areas and lower levels of sales in lower-priced areas compared to a year ago. Table 2 below is sorted by median price for zip codes and show YoY volume change, both averaged over the last 6 DataQuick/SJM weekly reports (each report gives sales for the preceding four weeks). The vast majority of these sales were initiated in January and February.

Table 2: Price Versus YoY Change In Sales Volume
Averaged Over the Last 6 Weekly Reports
For Various Zip Codes, Santa Clara Co.
Data Source: DataQuick/ San Jose Mercury News
Median Price YoY Volume
$1,770,417 -9.7%
$1,641,375 -10.6%
$1,622,417 39.2%
$1,556,250 20.2%
$1,319,000 11.2%
$1,147,875 34.7%
$1,059,515 -15.3%
$1,006,333 -14.4%
$981,125 35.5%
$896,667 118.8%
$896,167 20.3%
$871,958 -9.2%
$823,750 53.9%
$815,083 31.3%
$655,750 -27.1%
$647,917 -48.6%
$644,125 -40.2%
$642,458 -28.4%
$638,167 -25.9%
$634,250 -10.9%
$627,417 20.3%
$619,417 -43.0%
$617,167 -20.3%
$614,000 -17.5%
$605,833 -27.8%
$599,583 -19.3%
$592,833 21.0%
$588,500 -21.1%
$582,167 10.5%
$565,208 -31.0%
$558,417 -33.9%
$546,208 -30.5%
$536,417 -24.3%
$426,125 -39.2%
Median of Top 14 20.3%
Median of Bottom 20 -26.5%

Even though there is lot of noise in the data in Table 2 due to relatively small number of sales for a zip code for a 4-week period the signal is loud and clear and not suppressed by the noise (estimation and detection were my areas of specialty during my Ph.D. work). The trend of sales that were initiated in January and February, favoring sales in high-priced areas, has only accelerated based on recent reports. Here are comments by Richard Calhoun, REALTOR, Creekside Realty: "The high level of sales also includes Mt View, Sunnyvale, Cupertino, Santa Clara, Campbell, Cambrian and Almaden Valley [high-priced areas]. But this is contrast to other areas such as East Valley, South County, Evergreen, South San Jose, Central San Jose, Santa Teresa and Blossom Valley." According to Mr. Calhoun, Los Altos (excluding Los Altos Hills) and Palo Alto have seen very high levels of activity in recent weeks and a low level of supply. What I have noticed in the past week is that in these two townships there are 2.5 new listings and 0.25 price reductions for every sale (assuming that all the active listings that disappear are sales). Therefore, the low supply was purely a seasonal factor and the supply will catch up with the demand as the season picks up steam. The pressure on prices will be great during July-August as listings mount at much higher rate than the sales.

What is happening to prices in the high-priced areas? There is a bull (SVB) who lives in Los Altos zip code of 94022 and constantly posts bullish housing news in his area and taunts me for my bearish views despite lot of evidence that the bubble has burst and data show price declines in his zip code. Fig. 3 shows price data for 94022 as reported by DataQuick/SJM (I don't have data for the missing period).

I wouldn't be surprised if the YoY median price gains in SFH resales for Santa Clara County during Mar-Jun show 10-15% increases. That is how much the shift has taken place in sales in the high-priced areas compared to the low-priced areas of Silicon Valley this year. What explains it? The ""silly" money." Silicon Valley, like Manhattan, is a poster for America becoming a nation of Haves and Have-nots. People in Silicon Valley have forgotten the short depression of 2001-02 (more than 20% decline in total employment qualifies for a depression by anyone's definition) and home price declines that took place. What saved Silicon Valley from the continued depression, or deep recession, was that the housing bubble in the rest of California and many parts of the nation arrived there in late 2003 early 2004 led by "toxic mortgages." It so happens that the "toxic mortgages" affected the lower-priced areas much more than the higher-priced areas.

There are at least 10% of those who were employed in 2000 and have dropped out of the labor force due to lack of "suitable" jobs since who still live in Santa Clara County. Therefore, the unemployment rate that is reported grossly underreports the actual unemployment rate. How have these unemployed managed to live there? Home equity withdrawal. If there were to be a 20%+ decline in home prices these people will be forced to sell their homes and move to cheaper areas. This will further exacerbate the price decline. The people who claim that home prices in Silicon Valley CANNOT decline by more than 20% are the same people that said that the leading local tech stocks in 2000 couldn't decline by more than 50%. My prediction of 93.9% decline in CSCO fell short by 3.8% (the actual decline was only 90.1%).

Is what is being observed in Santa Clara County, in terms of bias of sales towards high-priced zip codes, applicable to other areas and at a broader scale? My best guess is yes, especially, in L.A. County and Southern California as a whole. Needless to say that it applies to New York City area because the dynamics are the same. There is another form of bias that shows bigger price gains (or hides the price declines) than the true price changes taking place in any area. For example, widely followed OFHEO HPI is very heavily distorted because it looks at price changes in the homes that are sold more than once by comparing with the prices during the previous sales of the same properties. The problem is that home that are sold are far more "modernized" than the homes that are not sold! This is particularly true during price bubbles. I read stories of homes in Palo Alto that are practically ripped apart for the purpose of selling (spending $0.8-1.0M for listing price of $2.5M). What do you suppose are changes in homes that have been sold 3 times in 30 years versus the home never sold during the same 30 years?

The problem with any data series, like with many real world issues, is: The Devil IS in the Details. According to a historian, general history is useless and correct lesions can only be learned from detailed history. In a fast food society busy accumulating "the crap that we don't need" who has the time?

By Jas Jain, Ph.D.
the Prophet of Doom and Gloom


© 2005-2022 http://www.MarketOracle.co.uk - The Market Oracle is a FREE Daily Financial Markets Analysis & Forecasting online publication.


Post Comment

Only logged in users are allowed to post comments. Register/ Log in